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Abstract—Satisfiability Modulo Theory (SMT) solvers have
advanced automated reasoning, solving complex formulas across
discrete and continuous domains. Recent progress in propositional
model counting motivates extending SMT capabilities toward
model counting, especially for hybrid SMT formulas. Existing
approaches, like bit-blasting, are limited to discrete variables,
highlighting the challenge of counting solutions projected onto
the discrete domain in hybrid formulas.

We introduce pact, an SMT model counter for hybrid formulas
that uses hashing-based approximate model counting to estimate
solutions with theoretical guarantees. pact makes a logarithmic
number of SMT solver calls relative to the projection variables,
leveraging optimized hash functions. pact achieves significant
performance improvements over baselines on a large suite
of benchmarks. In particular, out of 14,202 instances, pact
successfully finished on 603 instances, while Baseline could only
finish on 13 instances.

I. INTRODUCTION

Propositional model counting is the task of counting the
number of satisfying assignments for a given Boolean formula.
Recent advances in model counters have made them useful for
solving a variety of real-world problems such as probabilistic
inference [1], software verification [2], network reliability [3],
and neural network verification [4]. The development of model
counters has been motivated by the success of SAT solvers over
the past few decades, which allowed researchers to explore
problems beyond mere satisfiability.

Concurrently, the success of SAT solvers led to an interest in
solving the satisfiability of formulas where the variables are not
just Boolean. This interest gave rise to the field of Satisfiability
Modulo Theories (SMT), which includes a range of theories
such as arithmetic, bitvectors, and data structures. SMT theories,
inspired by application needs, offer more succinct problem
representations than Boolean satisfiability. There has been
a significant development in the design of SMT solvers in
recent years [5]–[8]. The compactness of SMT and recent
solver advancements have made them useful in software
and hardware verification [9], [10], security [11], test-case
generation, synthesis, planning [12], and optimization [13].

In light of the availability of powerful SMT solvers, a natural
next challenge is to explore the problem of model counting
for SMT formulas. Despite demonstrated applications [2],
[14], SMT counting remains underexplored. Most prior work
has concentrated on problems where the underlying theory is
discrete, such as bitvectors [15]–[17], linear integers [18]–[20],
and strings [21]. Recent studies have shown that in these cases,

reducing the problem to Boolean model counting is often the
most effective approach [22]. On the other hand, SMT solvers
are widely employed for applications that require reasoning
over both continuous and discrete variables. For example, to
encode hybrid systems in cyber-physical systems or planning,
it is essential to have both variables. The existing work in SMT
counting is unable to handle SMT formulas with continuous
variables.

In this work, we seek to remedy the aforementioned situation.
In particular, we focus on a large class of SMT formulas, which
we refer to as hybrid SMT formulas. The hybrid SMT formulas
are defined over both discrete and continuous variables, and we
are interested in solutions projected over discrete variables. Our
investigations for the development of counting techniques for
hybrid SMT formulas are motivated by their ability to model
several interesting and relevant applications, such as robustness
quantification of cyber-physical systems and counting reachable
paths in software (for detailed discussion, see Section I-A).

The primary contribution of this work is the development of
a model counting tool, pact1, for efficient projected counting of
hybrid SMT formulas. The framework approximates the model
count with (ε, δ) guarantees. pact supports SMT formulas
with various theories, including linear and non-linear real
numbers, floating-point arithmetic, arrays, bit-vectors, or any
combination thereof. The projection variables are over bit-
vectors. pact employs a hashing-based approximate model
counting technique, utilizing various hash functions such as
multiply-mod-prime, multiply-shift, and XOR. The algorithm
makes O(log(|S|)) calls to the SMT oracle, where S is
the set of projection variables. We have implemented a
user-friendly tool based on CVC5, which will be released
post-publication. pact supports a diverse array of theories
including QF ABV, QF BVFP, QF UFBV, QF ABVFPLRA,
QF ABVFP, QF BVFPLRA.

To demonstrate runtime efficiency, we conduct an extensive
empirical evaluation over 14,202 benchmark instances. Out
of these 14,202 instances, pact successfully finished on 603
instances, while Baseline could finish only on 13 instances.
Importantly, Baseline fails on counts above 3,570, while pact
handles instances with over 1.7× 1019 solutions.

1The name pact is an acronym for partition and count for theories.



A. Applications

We now discuss four motivating applications for counting
over hybrid SMT formulas.

Robustness Analysis of Automotive Cyber-Physical Systems.
Evaluating robustness is crucial in automotive cyber-physical
systems (CPS), especially with the rise of autonomous vehicles.
Koley et al. [23] encoded the problem using SMT to identify
potential CPS attack vectors, incorporating both discrete and
continuous variables to represent cybernetic and physical
aspects, respectively. This framework extends to a quantitative
approach, where the problem becomes an SMT counting query.
Robustness is assessed by counting potential attack points, with
the projection set defined by the system’s input parameters.

Reachability Analysis of Critical Software. Consider a control-
flow graph (CFG) of critical software, where we are interested
in knowing how many different paths exist in that CFG, such
that some violating conditions are reached. We can encode
this problem as a counting problem on the SMT formula with
discrete and continuous variables, and the projection set would
contain Boolean variables indicating whether a node of CFG
is reachable. The projected model count will give the number
of satisfying paths in CFG.

Quantitative Software Verification. To ensure software relia-
bility, identifying bugs is not always sufficient; a quantitative
approach is vital for understanding their impact. A program
with an assertion is converted into an SMT formula through
a Single Static Assignment (SSA), revealing inputs that lead
to assertion failures by counting these specific inputs. Teuber
and Weigl [2] reduced the quantitative verification to projected
counting over hybrid SMT formulas, wherein the underlying
theory is QF BVFP.

Quantification of Information Flow. In the domain of software
reliability, the quantification of information flow represents a
critical challenge, particularly in measuring information leakage
within industrial software applications. Phan and Malacaria [24]
showed that the problem of quantification of information flow
in the case of standard programs can be reduced to the task of
counting over hybrid SMT formulas defined over QF BVFP.

II. PRELIMINARIES

Satisfiability Modulo Theory (SMT) [25] combines Boolean
satisfiability (SAT) with theories such as integer and real
arithmetic, bit-vectors, arrays, enabling efficient and automated
analysis of logical formulas involving various data types. SMT
solvers solves the satisfiability of an SMT formula.

Hybrid SMT Formulas. Some SMT theories are discrete (such
as bitvectors and integers), while others are continuous (such
as reals and floating points). We define a hybrid SMT formula
as an SMT formula that combines two or more theories,
where there is at least one discrete theory and one continuous
theory. For example, a formula in QF BVLRA is a hybrid
formula because it contains both real variables (continuous)
and bitvector variables (discrete).

Projection Set and Projected Solutions. Let F represent an
SMT formula, where Vars(F ) signifies the set of all variables
of F . A projection set S is a subset of Vars(F ). Given an
assignment τ to Vars(F ), T↓S denotes the projection of τ on
S Sol(F ) denotes the set of all solutions to the formula F .
Sol(F )↓S represents the set of all solutions of F projected on
S. In the context of this paper, S is a set of discrete variables
and therefore, Sol(F )↓S is a finite set.

Model Counting. Given a formula F and a projection set S,
the problem of model counting is to compute |Sol(F )↓S |. An
approximate model counter takes in a formula F , projection
set S, tolerance parameter ε, and confidence parameter δ, and
returns c such that Pr

[
|Sol(F )↓S |

1+ε ≤ c ≤ (1 + ε)|Sol(F )↓S |
]
≥

1− δ.

Hash functions. A hash function h : U → [m] maps elements
from a universe U to a range [m] = {0, 1, . . . ,m − 1}. A
pairwise independent hash function is a hash function chosen
from a family H of functions h : U → [m] such that, for any
two distinct elements x1, x2 ∈ U and for any i1, i2 ∈ [m]:
Pr[h(x1) = i1 ∧ h(x2) = i2] = 1/m2. A vector hash function
h : Ud → [m] extends this concept by mapping d-dimensional
vectors of w-bit integers to the range [m]. In this paper, the
term hash function refers to hash-based constraint, represented
as h(x) = α. The solutions of the formula F ∧ (h(x) = α)
form a subset of the solutions to F , restricted to those where
the hash function maps to α.

A. Problem Statement

We shall introduce the projected counting problem, defined
by the specific theory of the formula and the projection
variables.

Definition 1 (CountT↓P (F,S)). Given a logical formula F
defined over the SMT theory T ∪ P; and a projection set S
on theory P; where T is either discrete or continuous or com-
bination of both, and P is a discrete theory, CountT↓P(F,S)
refers to the problem of counting |Sol(F )↓S |.

In this work, we consider BV as P . Any possible the-
ory or combination of theories can serve as T . Conse-
quently, the resulting counting problems take forms such as
CountBVFPLRA↓BV, CountBVFP↓BV, and similar variations.

B. Related Work

The success of propositional model counters, particularly
approximate model counters, prompted efforts to extend the
techniques to word-level constraints. Chistikov et al. [15]
used bit-blasting to extend the propositional model counting
technique to word-level benchmarks. Chakraborty et al. [16]
designed SMTApproxMC by lifting the hash functions for
word-level constraints. Kim and McCamant [17] designed a
system to estimate model count of bitvector formulas. Ge
et al. [26] developed a probabilistic polynomial-time model
counting algorithm for bit-vector problems, and also developed
a series of algorithms in the context of related SMT theories
to compute or estimate [18], [19], [27] the number of solutions



for linear integer arithmetic constraints. A closely related
problem in the hybrid domain of Boolean and rational variables
is Weighted Model Integration (WMI) [28], which involves
computing the volume given the weight density over the entire
domain. Extensive research addresses WMI through techniques
such as predicate abstraction and All-SMT [29], [30], as well
as methods leveraging knowledge compilation [31].

Hashing-based approximate model counting has been ex-
tensively studied over the past decades [15], [16], [32]–[41].
Chakraborty et al. [42] showed that variations in a few
key components in a generalized framework account for the
diversity in prior approaches. While prior works focused on
discrete domains such as Boolean variables [35], [36], [40]
and bitvectors [15], [16], our approach extends this framework
to hybrid SMT formulas.

III. ALGORITHM AND IMPLEMENTATION

We introduce pact, our tool for approximate counting of
SMT formulas. It processes a formula F , a set of projection
variables S, a tolerance ε, and a confidence δ to produce an
approximation of |Sol(F )↓S | within the desired tolerance and
confidence. The main idea behind pact involves dividing the
solution space into equally sized cells using hash functions
and then enumerating the solutions within each cell.

Algorithm 1 pact(F, S, ε, δ, family)
1: L← ∅, it← 0
2: thresh, numIt, ℓ← GetConstants(ε, δ, family)
3: C[0]← SaturatingCounter(F, S, thresh)
4: if C[0] ̸= T then return C[0]

5: while it < numIt do
6: C← ∅, countFound← ⊥, i← 0
7: H ← GenerateHash(S, ℓ, family)
8: while countFound = ⊥ do
9: i← NextIndex(C, i)

10: C[i]← SaturatingCounter(F ∧H[i], P, thresh)
11: if C[i] < thresh ∧ C[i− 1] = ⊤ then
12: C′, H ′ ← FixLastHash(F, S,C, H, i, ℓ)
13: L.append(GetCount(C′[i], H ′))
14: countFound← ⊤, it++
15: return FindMedian(L)

Algorithm 1 presents the main algorithm pact. The algorithm
starts by setting constants of the algorithm, the value for thresh
and numIt from the values of ε and δ, depending on the
hash family being used. The constants arise from technical
calculations in the correctness proof of the algorithm, and the
values are shown GetConstants subroutine (Algorithm 3). The
value of thresh determines the maximum size of a cell. A cell
is considered small if it has a number of solutions less than
this threshold. The value of numIt determines how many times
the main loop of the program (lines 5 - 14) is repeated. In each
iteration of the main loop, an approximate count is generated,
which is stored in the list L. While each of the approximate
counts might fail to provide an estimate with the desired δ,

the median of the counts of this list gives the approximation
of model count with (ε, δ) guarantees.

The main loop of the algorithm begins with the subroutine
GenerateHash, which produces a list of hash functions H
selected from one of the families Hshift, Hprime, or Hxor to
be used during the current iteration. In each iteration, pact
maintains a list C of numbers, where the element C[i] represents
the size of a cell after applying the first i hash functions from H ,
denoted as H[i]. The subroutine NextIndex, called in line 9, uses
a galloping search to identify an index i in C where the value
of C[i] has been computed. The parameter ℓ in GenerateHash
determines the range of hash functions generated. Specifically,
(i) for Hshift, the range of hash functions is set to 2ℓ, and (ii)
for Hprime, GenerateHash constructs hash functions of a range
of the smallest prime larger than 2ℓ.

Following that, in line 10-11, pact checks by a call to
SaturatingCounter whether |Sol(F ∧ H[i])↓S | < thresh and
|Sol(F ∧ H[i])↓S | ≥ thresh. With this condition, pact is
enabled a rough estimate of the model count, but to get
the estimate within desired error bounds, pact uses the
FixLastHash subroutine in line 12. This subroutine eliminates
the last hash, H[i], and introduces a new hash function that
reduces the number of solution partitions. The subroutine
iterates the procedure to find two hash functions h′ and
h′′, such that h′′ divides the space into k/2 parts, while h′

divides into k parts. Now if |Sol(F ∧ H[i−1] ∧ h′)↓S | <
thresh, |Sol(F ∧ H[i−1] ∧ h′′)↓S | ≥ thresh, FixLastHash
returns H ′ = H[i−1] ∧ h′ and C ′ = |Sol(F ∧H[i−1] ∧ h′)↓S |.
However, when pact uses Hxor, the call to FixLastHash is
unnecessary, as it already partitions the solution space into two
parts using one hash function.

The subroutine GetCount approximates Sol(F )↓S by multi-
plying C ′ with the number of partitions generated by all the
hashes used in H ′. This number is then appended to the list
L, and pact continues to the next iteration of the main loop.
Once the main loop generates count for numIt times, we take
the median of all the counts, which is an approximation for
Sol(F )↓S with desired guarantees.

Algorithm 2 FixLastHash(F, S,C, H, i, ℓ)

1: if family= Hxor then return C, H

2: while ℓ > 1 do
3: ℓ← ⌊ℓ/2⌋
4: h(ℓ) ← GenerateHash(S, ℓ, family)
5: c← SaturatingCounter(F ∧H[i−1] ∧ h(ℓ), S, thresh)
6: if c ̸= ⊤ then C[i] = c,H[i] = h(ℓ)

7: else return C, H

8: return ⊥

A. Hash functions.

The choice of hash function is one of the most important
parts in a hashing-based model counter like pact. In pact, we
experiment with three different pairwise independent vector
hash functions, which have been used in different literature.



Algorithm 3 GetConstants(ε, δ, family)

1: thresh← 1 + 9.84
(
1 + ε

1+ε

) (
1 + 1

ε

)2
2: if family = Hxor then iters← ⌈17 log 3

δ ⌉, ℓ← 1
3: else iters← ⌈23 log 3

δ ⌉, ℓ← 4

4: return thresh, iters, ℓ

• Multiply mod prime (Hprime) [43]: For a prime number p,
and independent random values a = a0, . . . , ad−1, b ∈ [p],
the hash function from [p]d to [p] is given by:

ha,b(x) ≡

∑
i∈[d]

aixi + b

 mod p = α

• Multiply-shift (Hshift) [44]: For independent random values
a = a0, . . . , ad−1, b ∈ [2w], where w ≥ w + ℓ − 1 the
hash function from [2w]d to [2ℓ] is given by:

ha,b(x) ≡

∑
i∈[d]

aixi + b

 [w − ℓ, w) = α

• Bitwise XOR (Hxor) [45]: This is a particular case of the
multiply mod prime scheme when p = 2.

ha(x) ≡
⊕

{i|ai=1}

xi = α

Given the type of hash function to generate, the procedure
GenerateHash generates the constraints of the form ha,b = α,
where α is a randomly chosen element from the domain of
the hash function. When this hash function-based constraint
H is added to the input formula F , F ∧ H satisfies only
those solutions of H for which the hashed value by Ha,b is α.
therefore, the number of solutions of F ∧H is approximately
pth fraction of number of solution of F . Hprime and Hshift are
word-level hash functions that allow us to choose a number of
partitions we want to divide our solution space into. When pact
uses these hash functions, along with the projection set S, and
the family, GenerateHash takes a parameter ℓ, and generates
a hash function with domain size p, such that 2ℓ ≤ p < 2ℓ+1.
Specifically, in Hshift, p = 2ℓ, in Hprime, p is the smallest prime
> 2ℓ. In case of Hxor, ℓ = 1, p = 2. As S is evident from the
context, and a, b are randomly generated, we use the notation
h instead of h(S) to denote the hash functions.

While each of the hashing constraints partitions the solution
space into p slices, we often want to partition it into more. To
partition the solution space into pc cells, we use the Cartesian
product of c hash functions: H × H × · · · × H. We use the
notation H[i] to denote the Cartesian product of the first i+ 1
hash functions, i.e., H[i] = h0 × h1 × · · · × hi.
Slicing. In GenerateHash subroutine of pact, the hash functions
have particular domain sizes. But, the bitvectors can have
arbitrary width; we slice them into bitvectors of smaller width
so that the value of (sliced) bitvector lies within the domain
of the hash function. Instead of defining hash functions on the
variables from S, we define hash functions on slices of the

variables, defined as follows: For a bitvector x of width w, we
define ⌈w/ℓ⌉ slices of width ℓ: x(⌈w/ℓ⌉ − 1), . . . , x(1), x(0),
where x(i) = x [(i+ 1)ℓ− 1 : iℓ].

B. Enumerating in a cell.

Another crucial step in pact is to determine when the
size of a cell is less than the threshold. pact uses the
SaturatingCounter subroutine to enumerate solutions of the
formula F ∧ H[i] to determine the size. An SMT solver is
employed to find a solution res for the given formula F . The
projection of this solution, res↓S , is then blocked by adding a
constraint ¬(res↓S). Subsequently, the solver is asked to find
another solution. This process is repeated in a loop until the
solver finds thresh many solutions or reports UNSAT.

C. Searching for the number of partitions.

The number of index of C goes upto O(|S|). The task for
NextIndex subroutine is to find the index, for which the cell
size is in the range [1, thresh]. The NextIndex finds the index
by O(log(|S|)) many calls by employing a galloping search
method.

We defer the detailed descriptions of GenerateHash,
NextIndex, SaturatingCounter, GetCount and to the technical
report of the paper.

D. Analysis

Theorem 1. Let F be a formula defined over a set of
variables V and discrete projection variables S. Let Est =
pact(F, S, ε, δ) be the approximation returned by pact, and
c = |Sol(F )↓S |. Then,

Pr

[
c

1 + ε
≤ Est ≤ (1 + ε)c

]
≥ 1− δ

Moreover, pact makes O(log(|S|) 1
ε2 log(

1
δ )) many calls to an

SMT solver.

Proof. We defer the proof to the accompanying technical report.

E. Impact of Hash Function Families

Our empirical evaluation indicates SaturatingCounter is
computationally the most expensive subroutine during execution
of pact. Recall that SaturatingCounter is invoked over the
formula instance F ∧H[i]; naturally, the choice of the hash
function family impacts the practical difficulty of the instance
F ∧H[i]. Below, we highlight the tradeoffs offered by different
hash function families along many dimensions.

• Bit-level vs. Bitvector Operations: The hash function Hxor

operates at the bit level, whereas Hshift and Hprime function
on bitvectors, making the latter two more amenable to
SMT reasoning. This fundamental difference in operation
also enables Hprime and Hshift to vary the hash function’s
domain sizes, a flexibility not available with Hxor.

• Number of hash functions: As each hash function cannot
partition the solution space by more than two partitions,
Hxor requires more number of constraints for counting



TABLE I
NUMBER OF INSTANCES COUNTED. (PROJECTION ON BV VARIABLES.)

Logic Baseline pactprime pactshift pactxor

QF ABVFPLRA (30) − − − 4
QF ABVFP (333) 9 1 1 31
QF ABV (2922) − − − 287
QF BVFPLRA (55) − − − 37
QF BVFP (10434) 2 73 88 227
QF UFBV (428) 2 9 2 17

Total (14202) 13 83 91 603

an instance compared to Hshift and Hprime. A number of
constraints generally make the problem harder for the
solver to solve efficiently.

• Complexity of required operations: Multiplication and
modulus operations impose significant computational
overhead on SMT solvers, making Hprime and Hshift

more complicated than Hxor. Moreover, when pact uses
Hxor, it leverages the native XOR reasoning capability of
CryptoMiniSat SAT solver inside pact, further increasing
the counter’s performance.

• Requirement of bitwidth: To represent the value of
∑

aixi,
a bitvector of width 2w is required in Hshift, whereas a
bitwidth of 2w+ d is needed in Hprime, as the hash value
in Hshift is calculated modulo 22w, while in Hprime is
computed modulo a prime. Since SMT solver performance
degrades quickly with increasing bitwidth, Hshift is a
more favorable choice in this context. In an alternative
implementation of Hprime, each term aixi could be
represented modulo a prime, but this would require an
additional d modulo operations, increasing complexity.

F. Implementation and Supported Theories

We implement pact on top of CVC5, a modern SAT solver.
pact uses CVC5 for parsing the formula and running the
SMTSolve procedure. In the problem of CountT↓P , pact solves
all of the theories and theory combinations in SMT-Lib for
T and theories of bit-vectors for P . To enhance efficiency,
we utilize the SMT solver in its incremental mode, allowing
each subsequent query to leverage the information gained from
previous calls. Similar incremental calls are different calls to
SaturatingCounter at different iterations of pact.

IV. EXPERIMENTAL EVALUATION

We implemented the proposed algorithm on top of state-of-
the-art SMT solver CVC5. We used the following experimental
setup in the evaluation:
Baseline. As mentioned in Section I, the existing tools for
SMT counting are unable to handle CountT↓P problems. The
situation is similar to the early days of propositional model
counting, wherein enumeration-based counters were employed
as a baseline. In the same vein, we developed an enumeration-
based counter, referred to as Baseline, that uses the state-of-
the-art SMT solver, CVC5, the same solver employed by pact.
Baseline operates by asking for a solution from the SMT
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Fig. 1. Comparison of time taken to count by pact and Baseline.

solver and then appending a blocking clause that includes
assignments to the projection variable. Subsequently, it asks
the solver for another solution, continuing this process until
the solver indicates UNSAT.
Benchmarks. Our benchmark suite comprises 14,202 instances
from the SMT-Lib 2023 release. To minimize bias, we adopted
a benchmark selection methodology inspired by early works
on propositional model counting. We initially selected all
instances supported by six theories. Subsequently, we filtered
out instances where the number of solutions was very small
(less than 500 models) or where even satisfiability was
computationally challenging, as determined by CVC5’s inability
to find a satisfying assignment within 5 seconds.
Environment. We conducted all our experiments on a high-
performance computer cluster, with each node consisting of
Intel Xeon Gold 6148 CPUs. We allocated one CPU core and
an 8GB memory limit to each solver instance pair. To adhere
to the standard timeout used in model counting competitions,
we set the timeout for all experiments to 3600 seconds. We
use values of ε = 0.8 and δ = 0.2, in line with prior work in
the model counting community.
We conduct extensive experiments to understand the following:

RQ1) How does the runtime performance of pact compare
to that of Baseline, and how does the performance
vary with different hash function families?

RQ2) How accurate is the count computed by pact in
comparison to the exact count?

Summary of Results. pact solves a significant number of
instances from the benchmarks. It solved 603 instances, while
the Baseline counted only 13 instances. Among different hash
families, pact performs the best while it uses Hxor hash
functions. The accuracy of pact is also noteworthy; the average
approximation error is 3.3% while using Hxor hashes.

A. Performance of pact

We evaluate the performance of pact based on two metrics:
the number of instances solved and the time taken to solve
those instances. To differentiate pact utilizing different hash
function families, we use the notations pactprime, pactshift, and
pactxor.
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Instances solved. For each of the logic, we look at the number
of instances solved. Out of 14,202 instances, Baseline could
solve only 13 instances. Conversely, pactxor could solve 603
instances, demonstrating a substantial improvement compared
to Baseline. The performance varies across different logics,
which we represent in Table I. The number of instances solved
is 4.2% of the total number of instances, which is expected,
given the target problem for these instances is satisfiability,
and pact solves a more complex problem.
Comparison of Hash Functions. In the Table I, we compare the
performance of pact when it utilizes different hash functions for
partitioning the solution space. While all of them perform much
better in comparison to Baseline, the best performance is shown
by pactxor, which solved 603 instances. The performances of
pactprime and pactshift are similar, solving 83 and 91 instances.
Solving time comparison. A performance evaluation of Baseline
and pact is depicted in Figure 1, which is a cactus plot
comparing the solving time. The x-axis represents the number
of instances, while the y-axis shows the time taken. A point
(i, j) in the plot represents that a solver solved j benchmarks
out of the 14,202 benchmarks in the test suite in less than or
equal to j seconds. The different curves plot the performance
of Baseline and pact with different hash functions.
Performance against the number of solutions. The primary
constraint in the enumeration-based method is its capacity for
solution counting. The baseline model caps at 3,570 solutions,
while pact counts up to 1.7×1019. The performance of pactxor
is better than pactshift or pactprime in this regard as well - the
maximum count returned by them are in magnitudes of 107,
while pactxor is of 1019.

B. Quality of Approximation

From our benchmark set, only 13 instances were solved
by Baseline. To increase the number of instances for which
we know the exact count, we also include the benchmarks
with model counts between 100 and 500 in this section of the
paper - resulting in 64 instances. We quantify the quality of
approximation with the parameter error e = max

(
b
s ,

s
b

)
− 1,

where b is the count from Baseline and s from pact. this

definition of error aligns with the ε used in the algorithm’s
theoretical guarantees and can be interpreted as the observed
value of ε. Analysis of all 64 cases found that for pactxor, the
maximum e to be 0.26 and the average to be 0.03, signifying
pact substantially outperforms its theoretical bounds, which
is 0.8. In Figure 2, we illustrate the quality of approximation
for these instances. The x-axis lists the instances, while the
y-axis displays the relative error exhibited by a configuration of
pact. A dot (x, y) in the graph indicates xth instance showed a
relative error of y. The graph indicates that, for most instances,
the error lies below 0.2, with a few instances falling between
0.2 and 0.8. The error for pactshift and pactprime is relatively
higher than pactxor, with average error being 0.07 and 0.12 and
maximum error being 0.39 and 0.48. Our findings underline
pact’s accuracy and potential as a dependable tool for various
applications.

V. CONCLUSION AND FUTURE WORK

In this work, we introduced pact, a projected model counter
designed for hybrid SMT formulas. Motivated by the diverse
applications of model counting and the role of hashing, we
explored the impact of various hash functions, examining
both bit-level and bitvector-level approaches. Our empirical
evaluation demonstrates that pact achieves strong performance
on a broad application benchmark set. A dedicated XOR
reasoning engine significantly enhanced pact’s performance,
suggesting that further development of specialized reasoning
engines for bit vector-level hash functions could be a promising
research direction. Additionally, pact’s theoretical framework
supports the SMT theory of integers (with specified bounds)
as projection variables; this feature is not yet implemented and
remains an avenue for future work.
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