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Abstract
Satisfiability Modulo Theory (SMT) solvers have transformed the field of automated reasoning
owing to their established efficiency in handling problems arising from diverse domains. Given the
significant progress achieved by SMT solvers over the past two decades, it is natural to ask how
we can aim to solve beyond satisfiability. In this context, we take note of the significant progress
achieved in the development of propositional model counting over the past decade. The progress
in propositional model counting has also inspired new applications, and consequently, it is natural
to explore the design of scalable counters in the context of SMT. As a first step, we focus on the
problem of model counting on the quantifier-free fragment of the theory of bit-vector arithmetic.
Propositionalization (aka bitblasting) is often used for checking satisfiability of bitvector formulas. In
this work, we create a portfolio-based bitvector model counter, SharpSMT, that harnesses the power
of the recent progress made in propositionalization, off-the-shelf model counters and preprocessing
tools.

The main contribution of our paper involves the design of a portfolio-based bitvector counter,
creation of an application benchmark set for testing, and experimentation with varying components
of CNF-counters, propositionalization techniques, and preprocessors; ultimately resulting in a
system that solves four times the number of benchmarks solved by current state-of-the-art methods.
Our empirical analysis highlights the need for careful tight integration of propositionalization,
preprocessing, and CNF-counters in building such a system.
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Supplementary Material We provide the source code and all experimental data:
Software (Source Code): https://github.com/meelgroup/sharpSMT
Dataset (Benchmark, Experimental Data): https://tinyurl.com/sat-23-sm

1 Introduction

The paradigm of Satisfiability modulo Theory (SMT) solving has been core to the advances in
hardware and software verification over the past two decades. Consequently, the community
has developed several scalable state-of-the-art SMT solvers over the past two decades.
For many problem instances, satisfiability does not suffice, and one is often interested in
computations over the solution set. One such problem is counting the number of solutions
of a formula when the set of solutions is finite. As a starting point, we focus on the case
when the underlying formula is expressed in quantifier-free bit-vector arithmetic or, QFBV
(referred to as bit-vectors in simpler terms hereafter). Our motivation for bit-vectors stems
from it being one of the first theories to be investigated in the context of SMT solving and
also recent works that have demonstrated applications of counting for bit-vector formulas in
domains such as cryptography [1] and software verification [14,26].

The challenge of counting in the bit-vector model can be addressed through two methods:
(i) conducting reasoning over bit-vectors, or (ii) reducing the problem to CNF. While the
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former approach has been extensively studied in recent years through the utilization of lifting
techniques for word-level constraints [2], the latter has not been thoroughly assessed. Given
the scalability of CNF-counters, we investigate the design of a counting tool for bit-vector
formulas by relying on the propositionalization (aka bit-blasting) followed by the usage of
preprocessors and CNF-counters. Given the existence of several propositionalization schemes,
preprocessors and CNF-counters; it is natural to wonder what would be the ideal combination
for these three components. In this paper, we focus on the question : given a bit-vector
formula, what is the best possible way to count the number of solutions of the formula?

The primary contribution of this paper is a rigorous evaluation process to understand the
efficacy of these three components in counting bit-vector formulas. In particular,

1. Our work introduces SharpSMT, a portfolio bit-vector model counter that combines off-
the-shelf CNF-counters with propositionalization and preprocessing tools. In its optimal
configuration, SharpSMT is capable of solving 655 benchmarks, whereas the current
state-of-the-art, SMTApproxMC, can only solve 148. Additionally, SharpSMT has exact
model counting capabilities, where it solves 412 instances in the best configuration.

2. Since there is no standardized set of benchmark suites for bit-vectors, we have curated
a collection of 679 benchmarks from various practical domains like cryptography and
software verification. This collection was used to achieve a detailed empirical analysis to
find the best combination of components in SharpSMT.

3. Detailed experiments on these set of benchmarks reveal : (i) the best performing configur-
ation for SharpSMT is (TseitinEnc-ArjunImplicit-ApproxMC). (ii) If one is interested in exact
counts, then the best performing configuration of SharpSMT is (TseitinEnc-NoPreproc-
SharpSAT-TD).

The rest of the paper is organized as follows: We introduced the preliminaries and related
work in Section 2. In Section 3, we present an overview of our framework, SharpSMT. We
briefed our experimental methodology and results in Section 4. Finally, we conclude in
Section 5.

2 Background

A word (or bit-vector) is an array of bits. The size of the array is called the width of the
word. We consider here fixed-width words whose width is a constant. It is easy to see that a
word of width k can be used to represent elements of a set of size 2k. Let X be the set of
word-level variables and let F be a formula in the theory of quantifier free bit-vectors. A
model or solution of F is an assignment of word-level constants to variables in X such that
F evaluates to True. Let sol(F ) denote the set of models of F . The problem of counting is
to compute |sol(F )|. For many applications of model counting, small differences in the count
may not be important, and it may be sufficient to provide rough estimates as long as the
method is fast and the user has reasonable confidence in its accuracy. An approximate model
counter takes in a formula F , tolerance parameter ε, confidence parameter δ and returns c

such that Pr
[

|Sol(F )|
1+ε ≤ c ≤ (1 + ε)|sol(F )|

]
≥ 1 − δ

Related Work. The problem of enumerating the solutions to theory constraints was initially
addressed by Martin [22]. Afterwards, the success of propositional model counters, particu-
larly approximate model counters, prompted efforts to extend the techniques to word-level
constraints. Chistikov et al. [5] used bit-blasting to extend the hashing-based model counting
technique from the highly successful approximate CNF model counter, ApproxMC [3], to
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word-level benchmarks. Chakraborty et al. [2] designed SMTApproxMC by lifting the hash
functions for word-level constraints. Kim et al. [16, 17] designed a system for statistical
estimation to refine a probabilistic estimate of the model count continuously, but their
approach lacks (ε, δ)-guarantees. Ge et al. developed a probabilistic polynomial-time model
counting algorithm [10] and demonstrated its effectiveness on bit-vector problems. Ge et al.
also designed a series of algorithms, including IntCount [8], VolCE [12], PolyVest [9, 13],
and Vol2Lat [11], for either counting or approximating the number of models for the SMT
theory of linear arithmetic.

3 Approach

We developed SharpSMT, a model counting tool for the quantifier-free fragment of the
theory of bitvectors. Our tool estimates the size of the solution set for a given bitvector
formula. To achieve this goal, SharpSMT employs a portfolio-based approach that involves
propositionalization and preprocessing before applying an off-the-shelf model counter. Our
approach of reducing the problem to CNF enables our tool SharpSMT to take advantage of
ongoing improvements in propositional model counting. As shown in Figure 1, SharpSMT
comprises three primary components: (i) a tool for propositionalizing SMT2 formulas into
CNFs, (ii) a preprocessor for simplifying CNFs, and (iii) an off-the-shelf model counter. In
the following part of this section, we briefly describe the task and available tools for each
component. More description and rationale about selecting the current tools are given in the
??.

Propositionalization

1. No Preprocessing
2. Arjun (Explicit + Implicit)
3. ArjunImplicit

1. ADDMC
2. Ganak
3. SharpSAT-TD
4. ExactMC
5. ApproxMC

1. TechMap
2. TseitinEnc

Available tools for each component

Preprocessing
CNFBitvector

Formula
Model
Count

CNF
simplified Model Counting

Framework

Figure 1 Overview of the framework and available tools in SharpSMT.

Phase 1 : Propositionalization
The most commonly used method for converting a bitvector formula into a propositional
Boolean formula involves representing the formula as an And-Inverter Graph (AIG) circuit,
which is subsequently converted into conjunctive normal form (CNF). There are multiple
techniques available for converting an AIG to CNF, with the two most commonly used
ones being: (i) TseitinEnc : the standard Tseitin encoding [27] and (ii) TechMap : techno-
logy mapping based logic synthesis as proposed by Een et al. [7] The TseitinEnc method
provides a straightforward encoding for the AIG, whereas the TechMap method performs
various optimizations on the circuit to produce a minimized CNF. From the perspective of
satisfiability, studies have revealed that the performance of the encoding scheme is heavily
reliant on the benchmark set being investigated, with TseitinEnc exhibiting superior results
in some benchmark sets and TechMap being more effective in others [15]. In SharpSMT, we
experimented with both the method.
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Phase 2 : Preprocessing
Preprocessing is a technique commonly employed in satisfiability and model counting to
simplify the original problem instance. In practical scenarios, the problem instances are
typically rooted in circuits within a specific domain. These circuits are comprised of gates, and
the variables correspond to either input or output variables, with the output variables being
determined by the input variables. Preprocessing techniques have been developed to effectively
handle the input-output bipartition property, as discussed in several studies [19,20,25]. At
SharpSMT, we utilize Arjun [25] in two modes. The first mode employs an explicit gate
detection algorithm, while the second mode disables this feature. When the explicit gate
detection is disabled, we refer to the preprocessing technique as ArjunImplicit. However, when
the feature is enabled, we simply refer to the technique as Arjun.

Phase 3 : Model Counting
The third phase of SharpSMT comprises of a propositional model counter that finally
determines the number of solutions. We investigated various approaches to model counting,
including the paradigms of : (i) Search-based counters (ii) Compilation-based counters (iii)
Hashing-based approximate counters. In recent years, there has been a proliferation of
model counters, and the annual model counting competitions have demonstrated that various
model counters have distinct strengths and weaknesses for different problem types. In the
context of the current research, we examine the applicability of five model counters within
the framework of SharpSMT : two search-based counters SharpSAT-TD [18], Ganak [23]; two
compilation-based counters - ADDMC [6], and ExactMC [21]; and a hashing based approximate
counter ApproxMC [3, 4, 24]. By leveraging these diverse model counters, we aim to enhance
the computational efficiency of our investigations.

Thus, SharpSMT consists of three distinct components. We call particular combination of
these three components as a configuration of SharpSMT. In the following part of the paper,
we use the notation (A-B-C) to denote a configuration of SharpSMT, where A represents the
propositionalization technique, B represents the preprocessing technique, and C represents
the CNF-counter utilized in that particular configuration of SharpSMT.

4 Experimental Evaluation

The primary objective behind the development of SharpSMT was to identify an optimal
approach for performing bitvector counting. To assess the efficacy and accuracy of SharpSMT
under various configurations, we utilized an experimental setup that involved 30 different
configurations of SharpSMT. The evaluation procedure was conducted using the following
setup. We curate a substantial collection of benchmarks that pertain to the problem of model
counting and naturally encode into bitvector formulas. The benchmarks are sources from
quantitative software reliability estimation [26], robust reachability [14], cryptography [1], as
well as prior literature on bitvector counting [16]. We refer to these benchmark classes as
countersharp, robust, delphinium and smc respectively in the following part. The total number
of benchmarks used in our evaluation amounts to 679. We conducted all our experiments on
a high-performance computer cluster, with each node consisting of E5-2690 v3 CPU. We
set the memory limit to 24 GB for all configurations, and we ran each solver instance on a
single core. To adhere to the standard timeout used in model counting competitions, we set
the timeout for all experiments to 3600 seconds. We compare our performance with prior
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state-of-the-art bitvector model counter, SMTApproxMC. In particular, we sought to answer
to the following questions:

RQ1. How does the performance of SharpSMT compare to SMTApproxMC?
RQ2. How do different components, including propositionalization, preprocessing, and

model counting, affect the performance of SharpSMT?
RQ3. What is the variation in the counter’s performance results across benchmark sets?

Summary of Results. When configured optimally, SharpSMT has the ability to solve over
four times the amount of instances than SMTApproxMC. Out of a total of 679 instances,
SharpSMT is able to solve 655, whereas SMTApproxMC is only able to solve 148. Furthermore,
even when SharpSMT produces an exact model count, it can still solve a significantly greater
number of instances than SMTApproxMC, specifically 419 instances. We found that the
performance of SharpSMT is greatly impacted by the selection of the propositionalization
method, preprocessing techniques, and counting tools used. The counter’s effectiveness is
contingent on the combination of its components, and no individual component setting has
been shown to be superior across the board.

4.1 Comparison with prior state-of-the-art
We experimented with various configurations for SharpSMT and compared its performance
with SMTApproxMC, the current state-of-the-art bitvector model counter. The results
showed that with the configuration of (TseitinEnc-ArjunImplicit-ApproxMC), SharpSMT solved
655 instances, whereas SMTApproxMC could solve only 148 instances. Additionally, when
SharpSMT provided an exact model count with a configuration of (TseitinEnc-NoPreproc-
SharpSAT-TD), it managed to solve 419 instances, which is significantly more than what
SMTApproxMC could handle. The cactus plot in Figure 2a illustrates the comparison between
SMTApproxMC and the most effective approximate and exact counting setups of SharpSMT,
presenting the number of instances on the x-axis and the time taken on the y-axis. Each line
in the cactus plot corresponds to the performance of a bitvector model counter in a specific
configuration. Moreover, the scatter plot in Figure 2b compares the optimal configuration of
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Figure 2 Comparison to prior state-of-the-art. (a) Cactus plot illustrating the performance
comparison of SMTApproxMC and SharpSMT in the best approximate and exact counting settings.
(b) Scatter plot comparing performances of SMTApproxMC and SharpSMT in its best configuration.
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Figure 3 Comparison of Impact of CNF counters. (a) Cactus plot showing the performance
of SharpSMT with different model counters with TseitinEnc and no preprocessing. (b) Cactus plot
showing the performance of SharpSMT with each of the model counters combined with the best
possible propositionalization and preprocessing techniques.

SharpSMT with SMTApproxMC. The x-axis shows the best configuration for SharpSMT, while
the y-axis shows SMTApproxMC. Each point (x, y) represents an instance that SharpSMT
and SMTApproxMC solved in x and y seconds, respectively. The scatter plot indicates that
SharpSMT can solve most instances that SMTApproxMC solves, but in significantly less time.

4.2 Impact of Different Components
Impact of CNF Counters The cactus plots in Figure 3 illustrate the performance variations
of different model counters under two scenarios: (i) Figure 3a shows the results when the same
propositionalization techniques and no preprocessing are applied; and (ii) Figure 3b shows
the results when each model counter is combined with the best possible propositionalization
and preprocessing techniques. To summarize:

When SharpSMT uses no preprocessing, the highest performance is shown by using the
model counter SharpSAT-TD, by solving 412 out of 679 benchmarks. The second best
performance is shown by the model counter ExactMC, which solved 337 benchmarks.
Conversely, the performance while employing other model counters such as ApproxMC,
ADDMC, and Ganak was poor, with each solving less than 200 benchmarks.
The performance of the model counters remained almost consistent when propositionaliz-
ation system were varied between TseitinEnc and TechMap.
However, significant variations in performance were observed when certain preprocessing
methods were used. Specifically, performance of ApproxMC gets a huge improvement in
this case. The results of these variations are presented in a later section.

Impact of Propositionalization Techniques The bar graphs in Figure 4 compare different
propositionalization techniques. In these graphs, the y-axis displays the number of instances
solved, with each bar representing the number of instances solved in a particular configuration.
To evaluate the impact of different propositionalization techniques, we use two bars for
each model counter, with each bar representing the performance of the counter when a
specific propositionalization technique is employed. In the bar graph of Figure 4a, we
compare propositionalization, when no preprocessing is used. We compare the impact of
propositionalization in a similar bar plot while ArjunImplicit is used for preprocessing in
Figure 4b. In summary we find the following from the graphs:
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Figure 4 Comparison of propositionalization techniques. (a) Bar graph showing the
impact of propositionalization with no preprocessing. (b)Bar graph showing the impact of proposi-
tionalization with ArjunImplicit preprocessing.

According to the results presented in Figure 4a, using TseitinEnc as a propositionalization
technique instead of TechMap can improve the performance of SharpSMT when no
preprocessing is applied. This improvement is observed across all CNF-counters.
On the other hand, Figure 4b reveals that if ArjunImplicit is employed as a prepro-
cessing technique, the performance of SharpSMT remains relatively unchanged when the
propositionalization technique is switched.

Impact of Preprocessing Figure 5 compares preprocessing techniques. In bar graphs of
Figure 5a, we compare the impact of preprocessing while TseitinEnc was used as proposi-
tionalization techniques. The scatter plot in Figure 5b, we show the impact of varying the
preprocessing technique between Arjun and ArjunImplicit , while ApproxMC is the CNF-counter.
To summarize the results of preprocessing:

The preprocessors had very little significant positive impact on the performance of exact
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Figure 5 Comparison of preprocessing techniques. (a) Bar graph showing the impact of
preprocessing after TseitinEnc. and (b) Cactus plot comparing performance of SharpSMT with two
different preprocessing.
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model counting tools, and in a few cases, they even showed a slight negative impact.
For the approximate model counting tool ApproxMC, Arjun demonstrated a positive
impact, enabling the solving of 501 instances, which is 331 more than no preprocessing.
The impact of preprocessing technique on ApproxMC was even greater when ArjunImplicit
was used. In this case SharpSMT could solve 655 and 653 instances respectively, in cases
of TseitinEnc and TechMap propositionalization respectively.

Optimal Configuration Based on the findings above, the best performing settings are:

1. Approximate Count: SharpSMT with configuration of (TseitinEnc-ArjunImplicit-ApproxMC).
2. Exact Count: SharpSMT with configuration of (TseitinEnc-NoPreproc-SharpSAT-TD).

4.3 Benchmark-wise Variation
Performance of SharpSMT varied across different benchmark classes as configurations for
the component changes. Our benchmark suite consists of four different classes: delphinium,
countersharp, robust, and smc. The results of the bitvector model counters show significant
variation across the benchmarks. It should be noted that the previous state-of-the-art
component, SMTApproxMC, was only able to solve instances from two benchmark categories
(smc and countersharp), and failed to solve any instances from robust or delphinium. When
no preprocessing is used, the performance of different configurations varies significantly
across benchmarks. For example, the SharpSMT performance with the TseitinEnc-NoPreproc-
ApproxMC configuration is similar to that of SMTApproxMC, with most of the solved instances
coming from smc and countersharp. However, the situation changes when preprocessing
techniques are employed. In the best configurations, SharpSMT is capable of solving nearly
all instances across all benchmark sets.

5 Conclusion

In this paper, we propose a framework called SharpSMT that counts bitvector formulas
using various propositionalization methods, preprocessing techniques, and CNF-counters.
By leveraging SharpSMT, we investigate different strategies for counting bitvector formulas
and achieve a significant performance improvement of four times the current state-of-the-art.
Our framework provides a valuable starting point towards building a model counter capable
of directly reasoning over bitvectors. SharpSMT identifies which methods are effective in
counting bitvector instances and sets a new performance benchmark for bitvector model
counters. We believe that our work lays the foundation for future research on bitvector
reasoning without the need for propositionalization. Our next goal is to develop a bitvector
model counter that can reason over bitvectors and solve more instances.
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