Explaining SAT Solving using Causal Reasoning

SAT: BOOLEAN SATISFIABILITY
An important but hard problem

APPLICATIONS OF SAT

» Hardware and software verification: providing formal

Jiong Yang', Arijit Shaw?3, Teodora Baluta'
Mate Soos*, Kuldeep S. Meel'’

" Georgia Tech %Chennai Mathematical Institute

3 University of Toronto 4 Ethereum Foundation

SAT Solvers are simple in theory, but complex in implantation

Boolean Satisfiability (SAT) asks whether there exists an assignment of truth guarantees for bug-freeness, detecting design errors. SAT SOLVER IN THEORY SAT SOLVER IN PRACTICE

values that satisfies a given Boolean formula. Despite the problem being NP- * Theorem provers have solvers as an indispensable component. Conflict Driven CI Learning (CDCL) Alaorith ,

complete, modern SAT solvers solve large industrial problems in seconds. » Optimization: Planning, scheduling, resource allocation. onflict Driven Clause Learning (CDCL) Algorithm Implerpents the same algon.thm, but - much

SAT solvers are complex “black boxes” that use various heuristics to drive | < Bio-informatics: haplotype inference, protein folding. r o | complicate. qu example, Kissat, 2 rpodern
. . ’ Pick variable, assign SAT solver consists of more than 40K lines of

performance. Our work uses causal reasoning to uncover which solver . Crvntoaranhv: validating encrvotion. detect vulnerabilities , -

features truly cause better performance. yptography. g encryption, - No l code. Relies on several complex heuristics for:

e e » Variable Selection: Deciding which variable to
e T branch on next, and which value to assign.

THE MYSTERIOUS SAT SOLVERS

We have little understanding of why they
perform well only sometimes.

* Modern SAT solvers can often handle huge problems in
seconds, and get stuck on small benchmarks.

» Complexity-theoretic analyses focus on worst-case
behaviour, but do not explain the surprising success.

» Widely used heuristics are often justified by empirical
rules of thumb, but do not explain why they fail.

In this work, we work on solving this gap. Specifically,
we ask: what causes a learnt clause useful?

Our framework uses causal reasoning to uncover how
solver components interact and affect clause utility.

WHAT'S OUR DATA?

* It is not easy to intervene on SAT solvers, so we
depend on observational data.

* We modify a modern SAT solver to record detailed
features for every learned clause.

* Run solver on bunch of unsatisfiable formulas,
multiple times with different heuristics.

* Look at the proof of unsatisfiability to determine
which learnt clauses has been useful.

* Qur data looks like the following.

Branching Size LBD Time Utility

Maple 4 2 1000 10
VSIDS 7/ 3 10000 2
Maple 3 2 100 100
Heuristic k’\f‘J How many
used in solver Features about the ~ times the
learnt clause clause has
been used?

arijit@cs.toronto.edu

l

EXAMPLE BOOLEAN FORMULA

All
assigned”

<4-No

(AVB)AN(mAVB)AN(AV-B)A(-AV —B)
\‘B‘/ \ﬁB/
\‘J_/ Y:s

SAT

FRAMEWORK STRUCTURE LEARNING

We build a fully directed causal graph from observational data

Data Generation using hill-climbing algorithm.

_G
snctstranng | ooy omin ()\z{{

&

Structure Learning

X¥

\wpf/w

oty 3
QUERY + CAUSAL REASONING \‘@

Causal Reasoning

Query Answering

We encoded a few rules of thumb, and few

. . . - * Use the backdoor algorithm to identify the minimal set of
interesting questions as three types of queries:

controlled variables that d-separates treatment from outcome,
1. Average Treatment Effect (ATE) eliminating confounding effects.

ATE(X,Y,a,b) =E|Y|do(X = a)] —E|Y|do(X =b)] < Convert the ATE query into an estimand expression by summing

2. Conditional Average Treatment Effect (CATE) over the controlled variables, leveraging the backdoor set.
CATE(X,Y,W,a,b) = * Apply linear regression to estimate the causal effect from the

observational data.
ElY|do(X = a), W] —E|[Y|do(X =b), W]

» Validate the robustness of the estimation using refutation tests,

3. Average CATE such as adding an independent random common cause.
Question Query Conclusion

Does a low-LBD clause have greater utility? ~ ATE(Utility, LBD, 1) =-0.26 < 0 Low-LBD clause has greater utility.

Does a clause with high LBD experience CATE(Utility, Time, 10000, LBD > 6) =-0.09 <0 High-LBD clause experiences a rapid drop in

a rapid drop in utility over time? CATE(Utility, Time, 10000, LBD < 6) =0.38 >0 utility over time.

Does a small clause have greater utility? ATE(Utility, Size, 1) =-0.03 < 0 Small clause has greater utility,

What if the LBD is fixed? ACATE(Utility, Size, 1, LBD) =-0.02< 0 which also holds when LBD is fixed.

Yes—p

Learn clause

* Restart Mechanisms: Periodically resetting

T the solver’s state to explore different parts of
No valid level

the search space.
Conflict Analysis

e Clause Deletion: Learned clauses are vital for

performance, but they accumulate quickly.
Removing low-value clauses is crucial to
control memory usage.

UNSAT |4

We use causality to
demystify the solver

for an NP-complete
problem.

OPEN QUESTIONS

* Explain Hardness: Can our framework be extended to
reveal why certain problems are easy while others are
inherently hard?

* Improve Solvers: How can we enhance solver
performance by leveraging data-driven insights rather
than relying solely on expert intuition?

* Domain-Specific Solvers: Given the general-purpose
nature of solvers, is it possible to fine-tune heuristics for
specific domains using domain-specific data?

	Slide 2

