

`

Explaining SAT Solving using Causal Reasoning

Jiong Yang1, Arijit Shaw2,3, Teodora Baluta1

Mate Soos4, Kuldeep S. Meel1,3

1 Georgia Tech 2 Chennai Mathematical Institute
3 University of Toronto 4 Ethereum Foundation

arijit@cs.toronto.edu

APPLICATIONS OF SAT

arxiv.org/abs/2306.06294

Boolean Satisfiability (SAT) asks whether there exists an assignment of truth
values that satisfies a given Boolean formula. Despite the problem being NP-
complete, modern SAT solvers solve large industrial problems in seconds.
SAT solvers are complex “black boxes” that use various heuristics to drive
performance. Our work uses causal reasoning to uncover which solver
features truly cause better performance.

THE MYSTERIOUS SAT SOLVERS

We have little understanding of why they
perform well only sometimes.

SAT: BOOLEAN SATISFIABILITY
An important but hard problem

SAT SOLVER IN THEORY
Implements the same algorithm, but much
complicated. For example, Kissat, a modern
SAT solver consists of more than 40K lines of
code. Relies on several complex heuristics for:
● Variable Selection: Deciding which variable to

branch on next, and which value to assign.
● Restart Mechanisms: Periodically resetting

the solver’s state to explore different parts of
the search space.

● Clause Deletion: Learned clauses are vital for
performance, but they accumulate quickly.
Removing low-value clauses is crucial to
control memory usage.

QUERY + CAUSAL REASONING

FRAMEWORK

● Hardware and software verification: providing formal
guarantees for bug-freeness, detecting design errors.

● Theorem provers have solvers as an indispensable component.
● Optimization: Planning, scheduling, resource allocation.
● Bio-informatics: haplotype inference, protein folding.
● Cryptography: validating encryption, detect vulnerabilities.

SAT SOLVER IN PRACTICE

EXAMPLE BOOLEAN FORMULA

We use causality to
demystify the solver
for an NP-complete
problem.

Data Generation

Structure Learning Query Formulation

Causal Reasoning

Query Answering

WHAT’S OUR DATA?

● It is not easy to intervene on SAT solvers, so we
depend on observational data.

● We modify a modern SAT solver to record detailed
features for every learned clause.

● Run solver on bunch of unsatisfiable formulas,
multiple times with different heuristics.

● Look at the proof of unsatisfiability to determine
which learnt clauses has been useful.

● Our data looks like the following.

● Modern SAT solvers can often handle huge problems in
seconds, and get stuck on small benchmarks.

● Complexity-theoretic analyses focus on worst-case
behaviour, but do not explain the surprising success.

● Widely used heuristics are often justified by empirical
rules of thumb, but do not explain why they fail.

In this work, we work on solving this gap. Specifically,
we ask: what causes a learnt clause useful?

Our framework uses causal reasoning to uncover how
solver components interact and affect clause utility.

STRUCTURE LEARNING

Question Query Conclusion

Does a low-LBD clause have greater utility? ATE(Utility, LBD, 1) = −0.26 < 0 Low-LBD clause has greater utility.

Does a clause with high LBD experience
a rapid drop in utility over time?

CATE(Utility, Time, 10000, LBD > 6) = −0.09 < 0
CATE(Utility, Time, 10000, LBD ≤ 6) = 0.38 > 0

High-LBD clause experiences a rapid drop in
utility over time.

Does a small clause have greater utility?
What if the LBD is fixed?

ATE(Utility, Size, 1) = −0.03 < 0
ACATE(Utility, Size, 1, LBD) = −0.02 < 0

Small clause has greater utility,
which also holds when LBD is fixed.

We encoded a few rules of thumb, and few
interesting questions as three types of queries:
1. Average Treatment Effect (ATE)

2. Conditional Average Treatment Effect (CATE)

3. Average CATE

OPEN QUESTIONS

● Explain Hardness: Can our framework be extended to
reveal why certain problems are easy while others are
inherently hard?

● Improve Solvers: How can we enhance solver
performance by leveraging data-driven insights rather
than relying solely on expert intuition?

● Domain-Specific Solvers: Given the general-purpose
nature of solvers, is it possible to fine-tune heuristics for
specific domains using domain-specific data?

 Conflict Driven Clause Learning (CDCL) Algorithm

Heuristic
used in solver Features about the

learnt clause

How many
times the

clause has
been used?

Branching Size LBD Time Utility
Maple 4 2 1000 10
VSIDS 7 3 10000 2
Maple 3 2 100 100

We build a fully directed causal graph from observational data
using hill-climbing algorithm.

● Use the backdoor algorithm to identify the minimal set of
controlled variables that d-separates treatment from outcome,
eliminating confounding effects.

● Convert the ATE query into an estimand expression by summing
over the controlled variables, leveraging the backdoor set.

● Apply linear regression to estimate the causal effect from the
observational data.

● Validate the robustness of the estimation using refutation tests,
such as adding an independent random common cause.

SAT Solvers are simple in theory, but complex in implantation

	Slide 2

