
CrystalBall: How to create your custom SAT solver
Arijit Shaw1 Mate Soos1 Raghav Kulkarni2 Kuldeep S. Meel1

1School of Computing, National University of Singapore 2Chennai Mathematical Institute

CDCL(F)

A← {}
while hasUnassignedV ars(F, A) do

A← A ∪ PickBranchingLiteral(F, A)
while UnitPropagation(F, A) = conflict do
〈b, c〉 ← AnalyzeConflict()
if b < 0 then

return unsat
else

Backtrack(F, A, b)
if ClauseDeletionRequired(F ) then

ReduceLearntClauseDB(F)

return sat

Figure 1. Framework of a CDCL Algorithm. The green parts

are those where we need heuristics.

Clause deletion

Conflict

Learnt Clause

4 Search Space Reduction

8 Overhead in search

8 Memory Issues Problem

Solution
Delete clauses which

are not important

Modern Solvers CrystalBall(v1)

Delete clauses based

on activity / LBD.

Learn the heuristic as

a classifier by looking

at execution data.

Clause deletion is shown in the CDCL algorithm

(above) as ReduceLearntClauseDB(F).

Clause Maintainance in Modern Solvers

Tier 2

keep-short

Tier 0

keep-forever

Tier 1

keep-long

Clean up in

10k conflicts
Clean-up in

25k conflicts

With CrystalBall(v1) we create classifier for this Tier

1 and Tier 2. These classifiers are named keep-long

and keep-short respectively.

Open Ends

1. Knowing exact objective for clause learning.

Current labelling is based on usage in future.

2. More features. = More accuracy = Better

solver. CrystalBall always crave for new fea-

tures.

3. Normalized features. SVM or random forest

often work better while features are normal-

ized.

4. Learning other policies like restart and

branching.

5. Other models like neural nets or reinforce-

ment learning.

The Goal

The annual SAT competition witnesses :

1. The top solvers are based on Conflict-Driven Clause Learning (CDCL),

the structures are mostly same.

2. Yet there is an impressive improvement in performance from last year.

3. The major difference is made by some newly invented heuristics.

In this context, we ask, given white-box access to the execution of SAT solver, can we synthesize

algorithmic heuristic for the solver?

The project CrystalBall aims to seek an answer to this.

CrystalBall(v1) aimed at learning heuristic for clause deletion.

CrystalBall : Data Pipeline

Data Generation Data Labelling

CNFs
Run CryptoMiniSat

for data generation

DRAT

+

Data

Sample and Label data
Labelled

Data

Classifier Creation

Labelled

Data
Run a Classifier

Decision

Tree
Code Generator

Auto

Generated

Code

Figure 2. Steps in CrystalBall

Phase 1 : Data Collection

On UNSAT instances,run a customized version of Crypto-

MiniSat, that do not employ clause deletion at all.

This logs a lot (212 in v1) of features about learnt clauses

while the clause gets generated or used.

Phase 2 : Data Labeling

Hack into DRAT proofs, and this gives us idea about usage

of the learnt clause.

Based on this usage we label a clause as important (should

be kept) or not (should be thrown away).

Phase 3 : Classifier Creation

On this labelled data, use scikit-learn to create a classifier.

Choose from decision trees, random forests, or, SVMs.

Now we parse this decision tree and spit out C++ code

that is plugged back to CryptoMiniSat. We call this version

PredCryptoMiniSat.

Feature Engineering

Feature Type Example

Global # variables

Contextual # literals in clause,

LBD score.

Restart trail depth,

branch depth

Performance last time used

in a conflict

rdb0.used_for_uip_creation ≤ 21.5
100.0%

[0.332, 0.668]

cl.size ≤ 6.5
47.6%

[0.55, 0.45]
True

rdb0.act_ranking_top_10 ≤ 1.5
52.4%

[0.18, 0.82]

False

cl.size ≤ 4.5
17.6%

[0.382, 0.618]

rdb0.used_for_uip_creation ≤ 4.5
30.1%

[0.667, 0.333]

rdb1.used_for_uip_creation ≤ 11.5
8.7%

[0.303, 0.697]

rdb1.used_for_uip_creation ≤ 15.5
8.9%

[0.47, 0.53]

5.1%
[0.345, 0.655]

3.6%
[0.248, 0.752]

6.0%
[0.528, 0.472]

2.9%
[0.36, 0.64]

cl.num_total_lits_antecedents ≤ 2034.5
18.5%

[0.732, 0.268]

rdb1.used_for_uip_creation ≤ 46.5
11.6%

[0.572, 0.428]

16.7%
[0.713, 0.287]

1.8%
[0.936, 0.064]

11.2%
[0.583, 0.417]

0.4%
[0.322, 0.678]

rdb1.act_ranking_top_10 ≤ 1.5
33.4%

[0.122, 0.878]

cl.size ≤ 5.5
18.9%

[0.298, 0.702]

cl.size ≤ 4.5
22.0%

[0.088, 0.912]

cl.size ≤ 5.5
11.4%

[0.193, 0.807]

12.9%
[0.064, 0.936]

9.1%
[0.123, 0.877]

6.0%
[0.141, 0.859]

5.4%
[0.257, 0.743]

rdb0.dump_no ≤ 1.5
9.0%

[0.229, 0.771]

rdb0.used_for_uip_creation ≤ 39.5
9.9%

[0.367, 0.633]

4.5%
[0.193, 0.807]

4.5%
[0.268, 0.732]

5.2%
[0.423, 0.577]

4.7%
[0.31, 0.69]

Figure 3. Decision tree from SHA1 preimage attack benchmarks.

Some examples please . . .

A DRAT Proof

p cnf
-2 3 0
1 3 0

-1 2 0
-1 -2 0
1 -2 0
2 -3 0
3 6 0

1 -2 3 0 0
2 1 3 0 0
3 -1 2 0 0
4 -1 -2 0 0
5 1 -2 0 0
6 2 -3 0 0
7 -2 0 4 5 0
8 3 0 1 2 3 0
9 0 6 7 8 0

Labelled Data

glue size used_last_10k activity rank label

10 15 3 top half keep

7 10 1 bottom half throw

3 7 0 bottom half throw

Figure 4. Excerpt from a table generated by CrystalBall

Performance

We create two instance of PredCryptoMiniSat :

1. PCMS-satcomp : trained with SAT competition

benchmarks.

2. PCMS-sha1 : trained with CNFs that are example of

preimage attack on SHA1 algorithm.

Benchmark

solver SAT comp SHA1

CryptoMiniSat 2176 1129

PCMS-satcomp 2440 1263

PCMS-sha1 2805 1165

Some Machine Learning Statistics

During training with SHA-1 benchmark, the normalized con-

fusion matrix looked like the following:

Predicted

Throw Keep

Actual
Throw 0.82 0.18
Keep 0.11 0.89

The heuristics learnt for SHA1 benchmarks shown to the left.

Heuristics we’ve learnt

According to CrystalBall, while training with SAT

competition, the top features that should decide

are the following :

keep-short

rdb0.used for uip create

rdb0.last touched diff

rdb0.activity rel

rdb0.sum uip1 used

rdb1.sum uip1 used

rdb1.activity rel

(a)

keep-long

rdb0.sum uip1 used

rdb1.sum uip1 used

rdb0.used for uip create

rdb0.act ranking

rdb0.act ranking top 10

rdb0.last touched diff

(b)

What can we expect from CrystalBall ?

1. A “Configurable” SAT solver. For specific in-

dustrial / academic purpose.

2. Aportfolio solver, Like SATZilla, this will look at

the problem instance and decide which heuris-

tic it should use.

3. Aid in designing heuristics with an in-depth

data-driven understanding.

More Resources here

Paper

Blog

[1] Mate Soos, Raghav Kulkarni, and Kuldeep S Meel.

Crystalball: Gazing in the black box of sat solving.

In International Conference on Theory and Applica ons of

Satisfiability Testing, pages 371–387. Springer, 2019.

[2] CrystalBall: SAT solving, Data Gathering, and Machine

Learning,

https://www.msoos.org/2019/06/crystalball-sat-
solving-data-gathering-and-machine-learning/

https://github.com/msoos/cryptominisat/tree/crystalball Indian SAT-SMTWinter School ’19 arijits@cmi.ac.in

https://github.com/msoos/cryptominisat/tree/crystalball
mailto:arijits@cmi.ac.in

